- We present a new approximation scheme for the centrifugal term to solve the Schrodinger equation with the Hulthen potential for any arbitrary l-state by means of a mathematical Nikiforov-Uvarov (NU) method. We obtain the bound-state energy eigenvalues and the normalized corresponding eigenfunctions expressed in terms of the Jacobi polynomials or hypergeometric functions for a particle exposed to this potential field. Our numerical results of the energy eigenvalues are found to be in high agreement with those results obtained by using the program based on a numerical integration procedure. The s-wave (l = 0) analytic solution for the binding energies and eigenfunctions of a particle are also calculated. The physical meaning of the approximate analytical solution is discussed. The present approximation scheme is systematic and accurate.
NEAR EAST UNIVERSITY GRAND LIBRARY +90 (392) 223 64 64 Ext:5536. Near East Boulevard, Nicosia, TRNC This software is developed by NEU Library and it is based on Koha OSS
conforms to MARC21 library data transfer rules.