- Abstract A type-2 Takagi-Sugeno-Kang fuzzy neural system is proposed and its parameter update rules are derived using fuzzy clustering and gradient learning algorithms. The proposed type-2 fuzzy neural system is used for the control and the identification of a real-time servo system. Fuzzy c-means clustering algorithm is used to determine the initial places of the membership functions to ensure that the gradient descent algorithm used afterwards converges in a shorter time. A number of different load conditions including nonlinear and time-varying ones are used to investigate the performance of the proposed control algorithm. The control structure has the ability to regulate the servo system with reduced oscillations when compared with the results of its type-1 counterpart around the set point signal in the presence of load disturbances.
NEAR EAST UNIVERSITY GRAND LIBRARY +90 (392) 223 64 64 Ext:5536. Near East Boulevard, Nicosia, TRNC This software is developed by NEU Library and it is based on Koha OSS
conforms to MARC21 library data transfer rules.